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ABSTRACT 

A new approach to the verification of timing constraints on large digital systems 
has been developed. The associated algorithm is computationally efficient, and provides 
early and continuous feedback about the timing aspects of synchronous sequential 
circuits as they are designed. It also provides means for conveniently verifying the 
design section-by-section for designs which are too large to examine as a unit. 

This approach is new in that It uses a Stable value” to represent signals In the 
large maprity of instances in which it is unnecessary to know whether the signals are 
true or false in order to examine satisfaction of the timing constraints. For the 
remaining instances, it represents the full value behavior of signals, allowing it to 
evaluate compliance with the remaining timing constraints. This use of the “stable 
value” greatly reduces the number of states through which a digital system needs to be 
taken in the process of verifying its timing constraints, which in turn greatly reduces the 
amount of computing effort required, relative to that needed to verify the timing 
constraints via more traditional logic simulation. Not needing to know the values of 
most signals also greatly reduces the size of the data base needed to drive the verification 
process, relative to that required in doing logic simulation. Both of these savings are of 
exponential order. This approach thus makes feasible for the first time the exhaustive 
examination of complex digital circuits for satisfaction of timing constraints. 

A system has been implemented using this approach which takes a digital logic 
design specified in the SCALD Hardware Description Language, and verifies all of the 
timing constraints specified within it. This system has been used in the design of a very 
high performance central processing unit, the S-I Mark IIA processor. The use of the 
Timing Verifier allowed timing errors to be identified early in the design process, while 
it was still easy to correct them. Such timely error elimination has permitted the design 
to be completed more rapidly, and has also supported the creation of a design which will 
perform more rapidly without timing errors, when it is implemented in hardware. 

KEYWORDS: Design verification, Timing constraints, Digital systems, Logic 
simulation, Hierarchical design 
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Chapter I 

INTRODUCTION 

I.1 PURPOSE OF THIS INV,ESTICATiON 

The components comprising a digital system have a range of switching times 

associated with them. If the voltage at one end of a wire is changed, then the voltage at 

the other end of the wire will change after some delay, which is partly determined by the 

transmission line characteristics of the wire and its length. If the Input of a gate or other 

circuit is changed, there is a delay time which must elapse before its output can be 

guaranteed to have the value corresponding to its hew input value. Because of 

variations in the construction of these components, these delay times vary from one 

component to the next. 
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In order that a digital system perform correctly, a designer must take into account 

the possible propagation delays associated with each of the elements making up the 

system. If a path through a digital system has either too long or too short a delay 

associated with it, then the value of the circuit may be wrong at a critical point in space 

and time, causing the circuit to yield an incorrect result. This is called a timing error. 

Digital logic as it is currently implemented is intrinsically susceptible to such errors, and 

their complete elimination from all portions of a digital logic system is essential to 

guarantee that the logic will perform reliably and reproducibly under all variations in 

data and programs. This thesis addresses the early and efficient detection of these 

timing errors, so that digital logic designers can henceforth frequently check their designs 

for these errors as the design proceeds, thereby finding timing errors before the design 

proceeds too far and the errors become difficult to correct. Indeed, for complicated logic 

circuits, the ideas developed in this thesis makes exhaustive timing verification feasible 

for the first time. 

A system which uses these ideas has been implemented and is called the SCALD 

Timing Verifier. The Timing Verifier is a part of the SCALD (Structured 

Computer-Aided Logic Design) system EMc78a, Mc78b, Sp78, Sp791 SCALD is a 

complete computer-aided design automation environment which processes a 

graphics-based, hierarchical description of a digital logic design, generating a complete 

set of low-level documentation which includes that necessary to implement it in 

hardware. 

The timing verification approach developed here operates on synchronous 

-2- 



sequential systems. It performs a complete timing constraint verification based on the 

minimum and maximum propagation delays of the circuit components, their set-up and 

hold times, minimum pulse width constraints, and interconnection delays. 

One of the principal features of this approach is its ability to verify designs by 

modules, where a module is a logical section of a design. All of the signals going 

between modules must have user-specified assertions on them stating when they can 

change, and when they are stable. This ability to verify designs by modules permits 

much larger designs to be verified than would otherwise be possible because of 

limitations on the amount of memory available. It is also convenient for the verification 

of designs being done by a group of designers, to allow each designer to verify the 

timing constraints within his section of the design, independently of the rest of the 

design. 

The utilization of user-specified timing assertions on not-yet-generated signals 

allows the design to be checked as it progresses, even on a day-by-day basis. This is 

particularly important in that it allows timing errors to be corrected before they have a 

chance to propagate their effects throughout the design, or to cause major changes to be 

made late in the design. It also supports formation of an accurate estimate of the cycle 

time of a digital system before its design is completed. 
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1.2 TYPES OF DIGITAL SYSTEMS 

Digital logic systems can be classified into the following different types: 

combinational systems, synchronous sequential systems, or asynchronous sequential 

systems. The following sections will define these different types of systems, and will 

discuss the types of timing errors that occur in them. 

1.2.1 Combinational Systems 

Digital systems whose outputs are only a function of the current values of the 

inputs are called combinational systems EKr67, M&Z, Ob70, Un691 These systems have 

no internal state, and tend to be fairly simple. They consist of some number of levels of 

gates and lnverters connected together with no feedback paths. 

The main timing parameters of interest for combinational systems are the 

minimum and maximum delay through the logic from each of the inputs to each of the 

outputs. These are the timing parameters normally given by the manufacturer for an 

integrated circuit which consists of a combinational network of gates. 

-4- 



The calculation of the minimum propagation delay from any one input to any 

output is fairly simple. The delay along each of the paths from the input to the output 

of interest is calculated by summing up the minimum delay of each of the elements along 

the path, and then the minimum delay is given by the shortest delay path. The 

maximum propagation delay is calculated in the same way, except that the maximum 

delay of each element is used, and then the longest delay path determines the maximum 

propagation delay. 

1.2.2 Synchronous Seaucntial Systems 

A digital system Is sequential if it stores information concerning its past input 

states. A synchmow repentid system [Kr67, Mc62, Ob70, Un691 is one in which the 

stored internal state changes only at times determined by a central clock. The internal 

state is either stored in registers or latches, but is never stored by just creating feedback 

paths within the logic. In fact, every feedback path must contain one or more clocked 

registers or latches. Figure I-l shows a block diagram of a synchronous sequential 

system. 

A synchronous sequential system must have one central clock. All of the clock 

signals used in the design must then be generated from this central clock. The reason 

for having only one clock is so that the entire network uses a common standard for 



determining when to change the stored state. If multiple clocks are used, then a section 

of the logic which uses one clock cannot be certain that signals generated from a section 

which uses another clock will be stable at a particular time within its clock period, even 

if all relevant timing properties of the two sections are known. This problem of 

communicating between two synchronous systems is the classical synchronization problem 

[Li66, Co69, Ch72, Hu751. 

> > 

> 
COMBINQTIC+UX oUTPUTS 

LOGIC 

> 

REGISTER 

Figure 1-l 

A synchronous sequential system 
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Figure 1-2 

An asynchronous sequential system 

The following example demonstrates the operation of a simple asynchronous 

sequential circuit. Figure i-3 shows a set-reset type latch constructed out of two NOR 

gates. Normally both the “SET” and “RESET” inputs are false. If the “SET” input goes 

true, then the “A” output will go false, which in turn will cause the “B’ output to go true. 

With the “B” output true, the “A” output will stay false even if the “SET” Input is made 
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1.23 Asynchronous Sequential Systems 

Figure l-2 shows a block diagram of an asynchronous sequential system. 

Asynchronous sequential systems store internal state, like synchronous sequential systems, 

but are not required to have a central clock to control when the stored internal state can 

change IKr67, Mc62, Ob70, Un691 Both synchronous sequential systems and 

combinational systems are special cases of asynchronous sequential systems. 

Asynchronous sequential systems can either use clocked registers and latches to 

hold the internal state, or they can store state information by having feedback paths 

within the logic network which contain some delay in them. The delay is necessary so 

that when an input changes, the new outputs are a function of the old output values (and 

the new inputs), and not of the new outputs. The inertial-delay elements shown in the 

feedback paths in Figure 1-2 also filter out small pulses which may occur in the output 

from the combinational logic elements. This filtering is necessary If the comblnational 

logic contains any Aazurd~. (A hazard occurs when a signal goes to the wrong value for 

a short period of time, because ,of a difference In delay between different paths through 

the combinational logic.) 
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false again. In this way, the latch has stored the information that the “SET” input has 

been true. The “RESET” input can be used to clear the output of the latch in a similar 

fashion. The delay In the feedback path is provided by the intrinsic internal delay of 

the gates which constitute the circuit. 

Determining when one signal is changing in relation to another signal in 

asynchronous sequential circuits is much more difficult than in synchronous sequential 

circuits, because there is no central clock determining when signals can be changed. 

Instead, there are numerous delays and feedback paths within the network controlling 

the timing of the circuit. Verifying that there are no timing errors In an asynchronous 

sequential circuit is therefore fundamentally more difficult than doing so for 

synchronous sequential circuits. 
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A set-reset latch 
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1.2.4 Types of Systems Addressed bv this Thesig 

The timing verification approach developed in this thesis is designed to operate 

on combinational and synchronous sequential circuits. These are the dominant types of 

circuits used in large digital systems at the present time. In systems which contain a 

mixture of circuit types, this approach may be used to verify correct timing behavior of 

the synchronous and combinational parts, ignoring the rest of the design. Analysis of 

the timing of asynchronous circuits requires full functional verification, which is 

beyound the scope of this thesis. 

1.3 TYPES OF TIWIING ERRORS MADE BY DESIGNERS 

Within synchronous sequential digital systems, there are a number of different 

levels at which timing errors may occur. These can be resolved into three main levels: 

system-level timing errors which occur over multiple clock cycles, logic-level timing errors 

which occur within a clock cycle, and circuit-level timing errors which occur within a 

gate or storage element. The next three sections will treat each type of error in detail. 
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1.3.1 System-Level Timing Errors 

On the system level, timing errors may exist in both the software running on the 

system, in the microcode and in the hardware. System-level timing errors are those types 

of errors which occur between two units interacting over multiple clock cycles. 

Consider the timing errors which can occur in software. The operating system 

might try and read some data being retrieved from a disk storage unit before the unit’s 

controller has finished writing it into the CPU’s memory, This results in the wrong 

value being read. Another example is an interrupt occurring during a critical sequence 

of code. This could result in an input operation changing a variable which the code 

sequence depended on not being changed at that time. 

In the microcode or hardware, there can be errors In the communications protocol 

used between two different units. Consider a CPU talking to a controller on a bus. The 

definition of the bus might require that the CPU wait until an acknowledgment signal is 

generated before it is allowed to proceed after a particular operation. If there is a design 

error in the CPU such that it waits a certain amount of time, instead of waiting for the 

acknowledgment signal, an error would occur if the acknowledgment signal arrived later 

than expected. 
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Verification of these system-level timing errors is beyond the scope of this thesis. 

The currently best known way of addressing these problems is through the use of logic 

or system level simulation. 

1.3.2 Lo&-Level Timinn Errors 

On the logic level, there are a number of types of timing errors which may acur. 

These include failure to meet the set-up, hold, or minimum pulse width time 

requirements for a register, latch, memory, or other complex function. These generally 

occur because the delay of the combinational logic between two clocked elements is too 

long or too short. In addition, problems due to hazards on clock signals may arise, 

resulting in a register or latch being clocked unexpectedly. This could possibility cause 

data to be lost. The actual delays of the interconnections between the components are 

also a significant consideration, accounting for as much as half the delay in current large 

systems. 

Figure l-4 shows an edge-triggered D-type register, along with the definition of 

the propagation delay, set-up time, hold time, and minimum pulse width constraints. 

When the clock input of this register goes from a zero to a one, the register will change 

its output from its current value to the value given by its data input, after .its 

propagation delay has elapsed. If the data input is changing during the rising edge of 
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the clock, then the value to which the register will be set is indeterminate. In order to 

insure that the register is set to the proper value, the data input must be stable for a 

period before the rising edge of the clock (the set-up time), and it must remain stable for 

a period after the rising edge of the clock (the hold time.) In addition to set-up and hold 

time constraints, the register may not operate properly unless the clock pulse is at least as 

wide as the minimum clock pulse width specified for it. 
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Figure 1-4 

Example of a D-Type register 

Figure 1-5 shows an edge-triggered register being clocked by the output of a gate 

which has a hazard on it. The intent of this circuit is to conditionally clock the register 
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based on the value of the signal “ENABLE”, but because of too much delay in the 

generation of “ENABLE”, the register occasionally gets clocked when it is not supposed 

to. In Figure l-5, the signal “CLOCK” goes from a zero to a one 20 nsec into the cycle, 

and back to a zero 30 nsec into the cycle. The signal “ENABLE” wants to be a zero, in 

order to inhibit the register from being clocked, but doesn’t get to a zero until 25 nsec 

into the cycle. As a result, the signal ‘REG CLOCK” is a short, 5 nsec pulse, which may 

clock the register, rather than staying zero. This example is typical of a whole class of 

common timing errors where control signals are generated too late to reliably control the 

clocking of a register, latch, or memory element, The result can be a circuit that usually 

works, but will occasionally fail, e.g., when a clock pulse wide enough to cause the register 

to clock gets through when it is not supposed to. This type of intermittent timing error 

can be particularly hard to find after the system is constructed, and can result in systems 

that operate unreliably, but are nearly incapable of being fixed. 

A significant consideration in the design of large digital systems arises from the 

various delays in the interconnections between the logic elements. For short 

interconnections, a timing performance analysis needs to look at the length, capacitance 

and inductance of each interconnection in order to determine both the minimum and 

maximum possible delay. For interconnections having propagation times longer than 

roughly a quarter period of the voltage wave, a detailed analysis of the transmission line 

characteristics is required to determine the minimum and maximum possible delay, and 

whether there are any voltage wave reflections from impedance variations in the signal 

run of sufficient magnitude to cause extra clock transitions to acur, possibly causing a 

register to get clocked more times than is intended. Runs with such reflections on them 
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can be flagged by the transmission line simulator, allowing the timing verification 

process to flag them if they affect edge-sensitive inputs. 

ENW-E 

IiEG CUXK 

20NS.K 30 NSEC 

I 

i 

i3NSEC 25Nsx 

Figure 1-5 

Example of a hazard on a clock input to a register 
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1.33 Circuit-Level Timine Errors 

The circuit-level timing errors are those occurring within the design of the 

low-level circuits which implement the basic gate and storage elements. 

The analysis of the timing properties of the basic circuits used to implement the 

gates and storage elements requires consideration of the analog characteristics of the 

transistors and other devices used to construct them. Timing is determined by the 

current-driving capability of the transistors, their frequency characteristics and the 

amount of line and load capacitance that they are required to drive. Timing analysis 

must determine the minimum and maximum propagation delays from the inputs to the 

outputs. For registers, latches, and memory elements, values must be determined for the 

set-up, hold, and minimum pulse width constraints which will insure reliable operation 

of the circuit. 

The analysis of these low-level circuits requires detailed circuit analysis, which is 

beyound the scope of this thesis. The technique developed in this thesis verifies a 

design In terms of parameterized models that represent the timing properties of these 

low-level circuits. The parameters for these models are normally specified by Integrated 

circuit manufacturers when designing with standard components, or can be determined 
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through low-level circuit analysis for custom integrated circuits. 

A.4 PREVIOUS APPROACHES TO TIMING VERIFICATION 

There have been a number of approaches to the verification of timing constraints 

in digital logic systems. They can be grouped into two main categories: logic simulutiun 

and worst-case path analysis. The next two sections will review these two approaches. 

1.4.1 Logic Simulation 

The logic simulation approach consists of building a model of a digital system, 

which represents both its logical and timing properties, and then using this model to 

detect both logic and timing errors. This approach Is currently widely used tBa78, Bo77, 

Br72a, Ch74, Ch75a, Ch75b, Ha69, Kr77, Ku76, Ma77a, Maflb, Sz72, Sr75l If the 

system being simulated is a computer, then often programs will be loaded into the 

simulator to be executed to determine if the digital logic design being examined will 

execute them correctly and, if not, why not. The advantage of this approach over 

directly implementing a prototype and testing it is that it Is generally easier, faster and 

cheaper to identify and correct the errors in the simulated design, and to then update the 
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simulation model to reflect these changes. The logic simulator can also be built to take 

into account variations in the propagation delays, set-up times, hold-times, and 

minimum pulse width constraints, all of which occur from one component to the next. A 

hardware prototype, on the other hand, only represents one sample of the large number 

of possible combinations of timing properties, and cannot test the effects of possible 

variations in the components’ timing properties. 

The logic simulation of a circuit design can only show that the cases simulated will 

work properly when the design is implemented. Therefore, unless @ possible cases 

which have distinct timing paths for a design can be simulated, there is no guarantee 

that it does not contain undetected timing errors. For the design of a computer system, 

this requires that all possible programs that exercise distinct timing paths need to be 

identified and tried, if it is to be definitively shown that there are no timing errors in 

the design. This is clearly a difficult task for any but the simplest digital systems. It is 

usually impractical for large digital logic systems. The result is that normally all of the 

distinct timing paths are not exercised on a logic-simulated design, possibly leaving 

undetected timing errors to cause future problems. 

Another problem with the logic simulation approach to timing verification is that 

it needs to know the valu.es of all the signals in the circuit. This in turn requires either 

a complete design (including any microcode and programs) to be run on the simulator, or 

some way of generating value patterns to drive the undefined signals. Waiting until the 

design is completed to start logic simulation-- when this problem is smallest-means that 

errors are not found until late in the design cycle. Generating patterns to drive 
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undefined signals in mid-design is a tedious, time-consuming process. To test only the 

timing of a design, and not its logical correctness as well, requires knowing only when 

most signals are changing and when they are stable, not their full value behavior. 

One of the harder problems in logic simulation for timing verification is how to 

handle the possible range of propagation delays which a given component may have. 

There are two basic types of logic simulator systems that are used to address this 

problem. They are called minimum/maximum-based systems and probability-based 

systems. The type of system preferable in a particular situation depends on the design 

methodology used in the design to be verified. The minimum/maximum-based system 

corresponds to a design methodology where the delay of each component in the system is 

characterized in terms of a minimum and maximum possible value. These values are 

added in pairs to yield a pair of values corresponding to the minimum and maximum 

delays through any given logic path in the design. The probability-based system 

corresponds to a design methodology in which the delay of each component is given a 

probability distribution, and these distributions are then combined to determine the 

delay of a given path through the design, to some pre-specified confidence level. 

The next two sections will discuss these two different approaches in greater detail. 
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1.4.1.1 Minimum/Maximum-Based Logic Simulators 

Minimum/maximum-based logic simulators take a minimum and maximum 

specification for each timing parameter in the system to be simulated which has a 

possible range of values. TEGAS [Sz72, Sz753, SAGE IKu763, and LAMP ICh74, 

Ch75al are examples of minimum/maximum-based simulators. These systems have one 

or more extra states beyond the basic true and false states for specifying that a signal is 

changing, and that its value is not known. For example, TEGAS when doing precise 

delay timing uses 6 values: 0, 1, X (initialization value), U (signal rising), D (signal 

falling), and E (potential spike, hazard, or race). To model a gate with a range of 

possible propagation delays with this type of logic simulator, the output will be set to 

these extra values between its minimum and maximum delay. Which value it will be set 

to depends on the, possible behavior of the output for the particular case being 

simulated. 

In general, the minimum/maximum-based system is simpler than the 

probability-based system, both from the standpoint of the designer and the simulator. It 

also corresponds to the way that components are normally specified. The problem with 

the minimum/maximum-based system is that a real design usually could be made to run 

faster than this system will predict. This is because the probability is quite low that all 

of the components along a time-critical path will have the maximum or minimum 

-22- 



propagation delay values, if the delays of the components along that path are 

uncorrelated. 

1.4.1.2 Probability-Based Logic Simulators 

Probability-based logic simulators are the same as minimum/maximum-based 

logic simulators, except that they keep track of the mean and variance associated with 

events in the simulation, instead of the minimum/maximum times associated with an 

event. The “DIGSIM” system EMalla, Ma77b1, which uses this approach, assumes that 

propagation delays are normally distributed, and stores a mean and variance ‘to 

characterize each delay parameter. When evaluating a gate, it combines the probability 

function of all of its inputs to come up with a mean and variance characterizing the 

output of the gate, assuining the time of the output change can be modeled with the 

normal distribution. It also considers the correlation between the different delay 

parameters and events within the simulation. 

The basic problem with probability-based timing verification systems is that it is 

difficult to get good data on the distribution of the delays of system components and the 

timing correlations between the components. IC manufacturers normally test and sort 

components based on minimum/maximum delays, and not probability distributions. The 

probability distribution of the delays of components is also a function of the incoming 
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inspection procedures used. It is also difficult to get good data on the correlations 

between the delays of the different components being used in the construction of a 

design. For example, if a set of chips are all produced on one wafer, or in one 

production run, then their basic propagation delays may all have maximum propagation 

delays. Components can be mixed from different production runs to minimize this type 

of problem, but that adds to the manufacturing cost. In a probability-based system, 

taking into account any correlations is essential to avoid incorrect predictions. 

Calculations in a probability-based system are also much more difficult for the engineer 

to perform when checking the results of the simulation, and when determining the 

number of levels of logic which can be used while doing the initial design. 

1.4.2 Worst-Case Path-Searchine Algorithms 

The worst-case path analysis approach examines all paths through the 

combinational logic between registers or latches, searching for the longest and shortest 

paths. In the “GRASP” system [Wo78J, which uses this approach, the user identifies 

starting and terminating points in the design by hand. The system then searches all of 

the paths between these starting and terminating points to see that they are within their 

user-specified timing limits. If there are loops in the network that the user hasn’t broken 

with a terminating point, the “GRASP” system proceeds until it reaches some 

user-specified search limit. It is then up to the user to insert a terminating point in the 
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loop, and to rerun the analysis. 

In the Race Analysis System (RAS) IHa711, these user-specified starting and 

ending points for the search are automatically determined by the location of the latches 

and registers in a design, rather than by hand. The main problem with this approach is 

that it is unable to take into account the value behavior of the control signals when 

evaluating the timing of a circuit, and therefore tends to generate numerous irrelevant 

error messages. 
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Chapter II 

A NEW APPROACH TO TIMING VERIFICATION 

A new approach to verifying the satisfaction of timing constraints on large digital 

systems will now be described. A detailed discussion of a system implemented using this 

approach will be given in the next chapter. This approach operates on synchronous 

sequential systems, and checks all of the logic-level timing errors which occur within 

those systems. These include the non-satisfaction of the set-up, hold, or minimum pulse 

width time requirements far registers, latches, and other complex functions. In addition 

to examining for these errors, it checks the timing on control signals which are ANDed 

with clock signals to verify that they are stable while the clock is asserted, in order to 

avoid any possible hazard conditions on control-conditioned clock lines. This approach 

takes into account both the minimum and maximum propagation delays of all of a 

system’s components, including the interconnections between them. 

This approach does no low-level circuit analysis, but instead takes as input 
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parameterized models which define the operation of the gates, registers, and latches. 

Entirely different techniques are needed to do the low-level circuit analysis, which 

consider the analog characteristics of the circuits. It also does no system-level timing 

analysts, which would require it to understand the higher level protocols used between 

communicating units. The only known ways to do this are either gate-level logic 

simulation or construction of the system, and then evaluate It in simulated or actual 

operation. For interconnection delays, a specification of the minimum and maximum 

delay from the output of one logic element to the input of another logic element is 

required. The detailed transmission line analysis required to determine the possible 

range of signal delays of a given interconnection is done in the SCALD Physical Design 

Subsystem EMc78a, Mc78b, Sp78, Sp791 

2.1 OVERVIEW OF THE VERIFICATION PROCESS 

The timing verification approach developed here simulates one clock period of a 

circuit, keeping track of when signals can change their value with respect to the clock 

during that interval. The basic assumption behind such simulation is that signals have 

a periodic behavior with regard to when they can change their value relative to the 

central clock, which is normally the case for synchronous sequential circuits. 

When a signal can change its value with respect to the clock is in general a 
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function of the operation being done by the circuit. Calculating when a signal can 

change for all possible operations is in some cases overly pessimistic, and can cause 

numerous irrelevant error messages to be generated. In this situation, rather than just 

simulating one cycle, a number of cycles are simulated. Each simulated cycle is called a 

case, and only considers a subset of the possible operations done by the circuit. This 

way, each cycle simulated handles the timing properly for the operation being simulated, 

avoiding irrelevant error messages. 

The designer specifies the different cases that need to be simulated individually. 

The first case is then simulated, detecting any possible timing errors. After that, in 

going from case-to-case, only the parts of the circuit that are affected by the case 

analysis are reevaluated. The total number of cycles of the circuit simulated is then 

equal to the number of cases specified by the designer. 

All signals except for the clocks and a few control signals are simulated in terms of 

whether they are stuble or changing, instead of whether they are true or f&e. This 

symbolic timing simulation has the advantage that it tests the circuit for most of the 

possible state transitions in a signal pass. The resulting savings in computational effort 

are clearly of factorial (i.e., exponential) order. 

To clarify this approach, consider the following example. An edge-triggered 

register is clocked at a particular time with respect to the central clock. The output of 

the register can change only during a short time after it is clocked, so that it is 

guaranteed to be stable for the entire clock period except around the point at which it is 
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clocked. The output of a gate driven from this register can then be changing only 

during an interval of time determined by its propagation delay and when its inputs can 

be changing. If either the output of the register or gate are required to be stable during 

the part of the circuit cycle when they are possibly changing, then there is a possible 

timing error. 

The first step in the timing verification process is to calculate for each signal in a 

circuit when it could change during the circuit cycle time. Once this is determined, then 

it is relatively easy to check all of the.timlng constraints placed on the circuit. For 

instance, in order to check the set-up and hold times on a register, all that is required is 

to determine if its input could be changing at a time when it might be clocked. To check 

that a control signal which is ANDed with a clock is stable when the clock is asserted is 

-also a straightforward operation. 

2.2 CIRCUIT CLOCK PERIOD 

Circuits being verified must contain one basic clock, whose period has to be 

specified. If different parts of the circuit being verified run at different clock rates, then 

the period specified is the least common multiple of the different clock periods. For 

example, a processor might have an instruction unit which has a period of 30 nsec and 

an execution unit which has a period of 15 nsec. In this case, the period specified would 
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be 30 nsec. Clock signals which occur within the circuit may occur at any time within 

the clock period. 

2.3 TIME UNITS 

Time is expressed in two sets of units to the Timing Verifier. When specifying 

the timing properties of the components in which a design is Implemented, absolute time 

units are used (for example, nanoseconds). When specifying clocks and assertions in the 

design specification, user-specified clock unizs are employed which are convenient for the 

designer to use, and which can be scaled with the clock period. For example, the clock 

units for a design might be defined to be one-eighth of the clock period. This allows 

the relative timing within the design to automatically scale if the clock rate Is slowed 

down or speeded up as the design is done. 

2.4 CIRCUIT MODEL FEATURES 

Circuits are described for timing verification purposes in terms of gates, registers, 

latches, set-up and hold time constraints, and minimum pulse width constraints. More 

complex functions are then defined in terms of these primitives, through the use of 

-3O- 



graphic-based macros, using the SCALD Hardware Description Language [Mc78a, 

Mc78b, Sp78, Sp791. 

The following sections define the value system used to represent the behavior of 

signals and defines the primitive functions used to specify the design to the Timing 

Verifier. 

2.4.1 Value System Used To Represent Sienals 

At any instant in time, every signal in the circuit being timing-verified has exactly 

one of seven values, with the following associated meanings: 

0 false, or 0 
1 true, or 1 
S or STABLE signal, is stable, not changing 
C or CHANGE signal may be changing 
R or RISE signal is going from zero to one 
F or FALL signal is going from one to zero 
U or UNKNOWN initial value used for all signals 

The value of a signal over the clock period is represented by a linked list, each node of 

which specifies a signal value and the time duration of that value. The sum of the 



durations of all the nodes in the list must exactly equal the period of the circuit being 

analyzed. 

When a signal propagates through a gate or wire where it is delayed by a variable 

amount of time, then skew is added to the signal representation, denoting the uncertainty 

in when the signal will subsequently change. This skew is maintained separately in the 

signal representation to preserve information about the width of pulses. This is done to 

avoid incorrect assertions by the Timing Verifier that minimum pulse width 

requirements have not been met. If two or more changing signals are combined, the 

skew of the resulting signal cannot be represented separately. It is therefore incorporated 

into the signal representation by using the CHANGE, RISE, and FALL values. A 

detailed example showing this is given in Section 2.8. 

2.4.2 Definition of Combinational Functions 

This section defines the basic combinational functions used by the Timing 

Verifier. All other combinational functions may then be defined in terms of these basic 

functions. 

The following tables define the INCLUSIVE-OR (OR), AND (AND), 

EXCLUSIVE-OR (XOR), CHANGE (CHG), and NOT (NOT) functions for the 
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seven-value logic system used in the Timing Verifier. 

These functions are uniformly defined to give worst-case values. For example, 

when the signal values STABLE” and “RISING” are OR’ed together, the resultant 

signal value given is “RISING”. This is because the output in this case will either be 

stable or a rising edge, and the rising edge is the worst-case value. 

A OR B 
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B--,0 1 S C R F U 

CHG 6 
B--,0 1 S C R F U 

NOT A 

The output of the “CHANGE” function has the value “UNDEFINED” if any of 

its inputs are undefined. If all of its inputs are defined, then it has the value 

“CHANGE” if any of its inputs are changing; otherwise it has the value STABLE”. It 

is a useful function in modeling complex combinational logic, where the actual function 

being performed is not significant to the verification process. Common examples are in 

the modeling of parity trees and adders, in which cases the Timing Verifier cares only 
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when the outputs of these circuits are changing, not about their actual values. This 

again results In a factorial-level reduction in the complexity and computational effort of 

modeling these functions. 

2.4.3 Models for Registers and Latches 

The Timing Verifier has two models for registers which are shown in Figure 2-l. 

The first register model just has “CLOCK” and “DATA” inputs, and can change its 

output only on the rising-edge of its “CLOCK” input. The output of the register will be 

set to the “CHANGE” state during the time following the rising-edge of %LOCK” as 

determined by the minimum and maximum delays of the register. Unless the “DATA” 

input is a true or false during the rising-edge of the “CLOCK” input, the output will be 

set to the “STA.BLE” value for the rest of the cycle; otherwise, it will be set to the value 

of the “DATA” input. The example in Figure 2-1 shows a minimum delay of 1.0 nsec 

and a maximum delay of 3.8 nsec being specified for the register, which is 32-bits wide. 

The second register shown in Figure 2-1 is the same as the first, except that it has 

asynchronous ‘SET” and “RESET” inputs in addition to the “DATA” and “CLOCK” 

inputs. If the “SET” input is true and the “RESET” input is false, then the output of 

the register is set to true. If the “RESET” input is true and the SET” input is false, 

then the output of the register is set to false. If both the ‘SET” and ‘RESET” inputs are 
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true, then the output is set to “UNDEFINED”. If both the “SET” and “RESET” inputs 

are false, then the register operates identically to a register without the SET” and 

“RESET” inputs. For the cases where the “SET” and “RESET” input are changing, the 

output is set to the %HANGE” state. If the SET” and “RESET” inputs are stable, then 

the output will be stable if the register is not being clocked. The minimum and 

maximum propagation delays from all of the inputs are the same, and are given by the 

delay property of the register. If chips with different propagation delays from different 

inputs are to be modeled, then buffers are used on the various inputs to insert the 

proper delays. Primitives with different delays from different inputs could be 

implemented to improve execution efficiency, if desired. 

EDGE TRIGGEGm EDGE TRIGGERED 
D-TTPE REGISTfER D- TWE REGISTER 

UITH SET CN) RESET 

CLbCK J CLOCK 

Figure 2-1 

Two register models used by Timing Verifier 

The Timing Verifier has two models for latches, as shown in Figure 2-2. The 



“OUTPUT” of the first latch follows the ‘DATA” input when the ‘ENABLE” input is 

high, and holds the last value given by the “DATA” input when the “ENABLE” input 

is low. The ,“SET” and ‘RESET” inputs on the second latch in Figure 2-2 operate the 

same as for the register, and override the operation of the latch when they are non-zero. 

The minimum and maximum propagation delay from all of the inputs on the latch are 

the same, and is glven by the ‘DELAY” property. For the example shown in the Figure, 

the minimum propagation delay is 1.0 nsec, and the maximum propagation delay is 3.5 

nsec. 
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Figure 2-2 

Two latch models used by Timing Verifier 
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2.4.4 Set-up and Hold Time Checkers 

There are two primitive functions shown in Figure 2-3 which are used to check 

set-up and hold times. The first checker is called a “SETUP HOLD CHK”, and checks 

to see that the signal connected to the ‘I” input is stable for a period around the rising 

edge of the “CK” input. The SETUP” property specifies the set-up time interval, 

which is the length of time the input signal must be stable before the rising edge of the 

clock input. The *HOLD” property specifies the hold time interval. This is the length 

of time the input signal must be stable after the rising edge of the clock input. 

The’second primitive shown in Figure 2-3 is a ‘SETUP RISE HOLD FALL 

CHK” primitive. It checks the set-up time interval of the input before the rising edge of 

the clock input, and the hold time interval after the falling edge of the clock input. It 

also checks to see that the input “I” is stable for the entire time interval over which the 

clock input ‘CK” is true. This type of set-up and hold checker is needed to verify the 

timing constraints on components such as memory elements. 
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Figure 2-3 

Set-up and hold time checkers used by Timing Verifier 

2.4.5 Minimum Pulse Width Checking 

The minimum pulse width checker primitive is used to specify verification of 

minimum pulse width constraints. Clock inputs to components typically have a 

minimum pulse width requirement which says that when they go high, they must stay 

high for some specified interval of time, and that when they go low, they must stay low 

for some specified time interval. Figure 2-4 shows the ‘MIN PULSE WIDTH” 

primitive, which shows a minimum high pulse width of 5.0 nsec being specified, as well 

as a minimum low pulse width of 3.0 nsec. 
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Figure 2-4 

Minimum pulse width checker 

2.5 SIGNAL ASSERTPON~ 

In order to be able to analyze partially designed circuits, the Verifier must have 

timing assertions on as-yet undefined signals. Undefined signals with no assertions are 

taken to be always stable, to prevent them from giving rise to numerous spurious timing 

errors. These signals are also put on a special cross reference listing, for appropriate 

attention from the designer to be directed to them unce. 

For defined signals, two types of assertions are used for specifying clocks, and one 
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is used for defining the behavior of control and data signals. 

2.5.1 Clock Assertions 

There are two categories of clock signals: precision and non-precision. The snly 

difference between precision and non-precision clock specifications is the default skew 

used by the Timing Verifier when none is explicitly given by the designer. Skew is 

generated by the variation in the interconnection delay to the different parts of a large 

digital system and by the variations in delay between the different buffers used in the 

clock generation. In the design of a large digital system, these variations can become 

quite large, and may degrade performance unacceptably. To reduce such skew to within 

acceptable limits, the shorter clock paths can have additional delays deliberately inserted 

into them. Because the delays in a clock distribution system may vary between successive 

implementations of a design, in many cases it must be adjusted by hand, using some type 

of adjustable delay for each of the clock lines. By use of this technique, the skew can be 

reduced to below some designer-specified value. In order to verify the timing in a 

design which has been so de-skewed, it is necessary to describe in detail how the clocks 

will be adjusted within the design specification. A number of features have been 

provided to make this task as easy as possible, and will be described in the section on 

evaluation directives. 
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If a clock signal is adjusted to some specified skew, then an assertion can be given 

within its signal name signifying that fact. Assertions are given at the end of signal 

names and are preceded by a period. They are considered part of the signal name by 

the rese of the SCALD system, which thereby guarantees that all of the assertions for a 

given signal are consistent by definition. 

The format for the assertions for the precision and non-precision clocks are 

<precision clock> 
cnon-precision clock> 
<assert speo 

<value specification> 

<time range> 
ct ime> 
<skeu specification> 
<minus skew> 
<plus skew> 
<time> 
<clock units> 
<polarity assertion> 

::= <signal name> .P <assert speo 
::= <signal name> .C <assert epec> 
::= <value epecificatior-0 

<skew specification> <polarity assertion> 
::- <time range> 1 

<time range> , <value specification> 
::- <time> 1 <time> - <time> 1 <time> + <time> 
::= <real number> 
::= 1 ( <minus skew> , <plus skew> 1 
::r - <real number> 1 <zero> 
::= <real number> 1 <zero> 
::= <clock units> 
::= <rea I numbers 
::= 1 L 

An example of clock specification is 

XYZ .C4-6 L 

which states that the clock signal goes from high to low at time 4, and from low to high 

at time 6. The signal 
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XYZ .C2-35-6 

Is high from 2 to 3 and from 5 to 6, and is low for the rest of the clock cycle. If a single 

time is given instead of a range, a time interval of one clock unit is assumed. For 

example, 

XYZ .C2,5 

is equivalent to the previous signal. The signal 

XYZ .P2,5 

is again equivalent, except that it is a precision clock, which means that it has a different 

default skew. .In general, it was found in the design of the S-l Mark IIA processor that 

having two types of clocks -- those that have been adjusted to reduce skew, and those 

that haven’t -- was convenient. The motivation was to only adjust those clocks which 

must be ad justed,, in order to reduce the aggregate cost of clock de-skewing. 

If a plus sign is given between the two time variables instead of the minus sign, 

then the second number specifies a width in nanoseconds, rather than the time of the 

end of the pulse in clock units. This allows widths of clocks to be specified which don’t 

scale with the cycle-time of the circuit. For example, 
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XYZ .P2+10 

specifies a clock that goes high at clock unit time 2, and stays high for 10.0 nsec 

thereafter. 

25.2 Stable Assertions 

The stable assertion is used to specify when a control or data signal is stable, and 

when it may be changing. Its general form is 

SIGNAL NAME .S <value specification> <polarity assertion> 

For example, the name XYZ .S4-8 says- that the signal is stable from time 4 to time & 

and that it may be changing during the rest of the cycle. 

This type of assertion has several uses. First, it allows the designer to specify his 

assumptions about when signals are valid (i.e., not changing) as he creates them in the 

design process, and those assumptions will be used by the Timing Verifier until the 

signals are generated by hardware. For signals so generated, the designer’s initial timing 

assertion is checked against the timing of the actual signal, and an error is given if the 

assertion is violated. Having these assertions on signals greatly improves the readability 
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of the design, since a signal name explicitly includes a specification of when it is valid. 

Putting these “stable” assertions on interface signals is the key to the ability to 

verify a design in sections. After each section is verified, SCALD checks to see that all 

interface signals have the same timing assertions on them. If no section of a design 

being verified has a timing error and if all of the interface signals of all such sections 

have consistent assertions on them, then the entire design must be free of timing errors. 

This modular verification capability is in turn crucial to the real-world utility of the 

timing verification approach described here, just as the use of subroutines and 

procedures is to structured programming. 

2.5.3 Interconnection Delay Specification 

Taking into account the effects of interconnection delays throughout the design 

process is essential if maximum system performance is to be attained when the design is 

completed. The ‘consideration of these delays needs to be approached from two different 

points of view, depending on whether or not the design is far enough along to allow the 

actual interconnection delays to be calculated. If the interconnection delays can be 

calculated from detailed simulation of the transmission line properties of the 

interconnections in the circuit-as-packaged, then these delay values are used by the 

Timing Verifier when checking timing constraints within the design. If the 
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interconnection delays are not yet known, the Timing Verifier uses a default 

interconnection delay for each signal. If the designer wishes, he may specify within the 

design a range for the interconnection delay for a specific signal, which will then 

override the default specification. 

2.6 EVALUATION DIRECTIVES 

Evaluation directives are used to specify: 

0 That the control signals being ANDed with a given clock signal must be stable 

while the clock is asserted. This is used to detect possible hazards which could 

be generated on the output of a gate, resulting in false clocking of the circuit 

that the gate controls. Section 1.3.2 gives an example of this type of timing 

error. In addition, these directives cause the Timing Verifier to assume that 

the control signals will be enabling the gate, so that its output value will be 

determined only from the value behavior of the clock signal. 

0 The tuning of clocks in systems that have hand-adjusted clocks to reduce skew. 

Additional information is needed here since the prints don’t specify how the 

clocks are adjusted. 
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Consider the circuit shown in Figure 2-5. The clock signal “CK .P2-3 L” is being 

ANDed with the control signal “WRITE SO-6 L” to generate a write-enable pulse for 

the RAM array. The “&H” directive specifies checking that the control signal “WRITE 

SO-6 L” is stable during the interval over which the clock is asserted, to ensure that the 

“write” will be either solidly enabled or completely disabled. In addition, this directive 

says the timing specified by the clock signal is to be adjusted so that it refers to the time 

at which the ourpuf, rather than the fnp~f, of the gate changes. This corresponds to a 

circuit in which the clock signals are adjusted to eliminate the skew generated by gating 

of the clock lines. The “&H” directive also specifies the assumption that the value of the 

‘WRITE .SO-6 L” signal is enabling the gate, allowing the clock signal to always 

propagate through the gate. 

The different evaluation directive and their meaning are: 

E 

W 

2 

A 

H 

Evaluate gate with no special action. This is the default mode. 

Zero wire going into gate. 

Zero gate and wire going into it. 

Check to see that other inputs to gate are not changing when this 
input is asserted (true). In calculating the output of the gate, assume 
that the other inputs are enabling the gate. 

This directive has the combined effects of the “Z” and -A” directives. 

For example, in Figure 2-5 the %Z” directive on the signal “CK .PO-4” states that 

the clock timing refers to the time at which the oufpul of the gate changes. If multiple 

directives are given after a signal, such as .&HZ”, then the first letter refers to the first 
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level of gating after the directive, the second refers to the second level of gating, etc. 

There is no limit on the length of a directive string. 

328 
l&l RFUl 

328 

10145Q 
REG 

U WTF( .S0-6(8:31, I T 121*x8:31, 
I R2 

10176 T aJTFuT~0:31~ 
Rl 

U?ITE Fw .SB-&0:E 0 
48 

18156 T m?c.B:P 10.e:6.01 
til 

RlZ#J WR .S4-W0:D 

w .P4-e 

CK .P2-3 L Lti 

Figure 2-5 

Example macro definition 
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2.7 CASE ANALYSIS 

When the timing verification of all possible operations of a circuit are reduced to 

the simulation of one cycle of the circuit through the use of the STABLE” and 

‘CHANGING” values, overly pessimistic results are sometlmes generated. When this 

occurs, the timing verification can be broken down into a number of separate 

simulations of the circuit. Each simulation tests out distinct operations of the circuit 

which place different timing constraints on the circuit. In doing these separate 

simulations, only those parts of the circuit that are affected by the case analysis are 

reevaluated, permitting most case analysis to be done quite efficiently. 

Some circuits have paths through them which are never used, and which require 

the case analysis feature to avoid generating pessimistic timing delays. Consider the 

example shown in Figure 2-6. If the circuit is analyzed without case analysis, where the 

signal “CONTROL SIGNAL” has the value STABLE”, then the delay from the signal 

‘INPUT” to the signal *OUTPUT” would be calculated to be 40 nsec. The problem is 

that the Timing Verifier would be unable to determine that both of the multiplexers 

could not select the “1” input at the same time. To use case analysis, the designer would 

specify that the signal “CONTROL SIGNAL” needs to analyzed separately for the cases 

when it is true and when it is false. For the first case, the Timing Verifier would then 
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set the signal “CONTROL SIGNAL” to the value #O” whenever the circuit would 

normally set it to the value “STABLE”. For the next case, it would set it to the value ‘I” 

whenever the circuit would normally set it to the value “STABLE”. By doing this, the 

two select lines on the multiplexers would always be set to complementary values, and the 

delay from the signal “INPUT” to the signal “OUTPUT” would be calculated to be 30 

nsec for both cases. 
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Figure 2-6 

Example of circuit requiring case analysis 
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2.7.1 Case Specification 

The designer must identify and specify the cases which need to be handled by case 

analysis. He does this by mapping the “STABLE” states into either “0” or “1” for the 

signals which control the operation that the circuit is to perform. Consider the following 

specification: 

CONTROL SI GNAL4: 

CONTROL SI GNAL=l : 

This specification gives two cases to be evaluated for the circuit in Figure 2-6. The first 

case causes the circuit to be simulated with the signal “CONTROL SIGNAL” having its 

“STABLE” values mapped into the value “1”. The second case specified causes the 

circuit to be simulated again with the signal %ONTROL SIGNAL” having its 

“STABLE” values mapped into ‘0”. 
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2.8 REPRESENTATION OF SIGNAL VALUES 

The Timing Verifier represents in memory the value of each signal over the 

circuit cycle time. It uses a linked list, which has the format shown in Figure Z-7. For 

each signal, there is a “VALUE BASE” record with a free storage link, a field to store 

the skew, a pointer to the evaluation string, and a pointer to the linked list representing 

the signal value. The "VALUE" record specifies the signal value and the width of that 

value. The sum of all of the “VALUE WIDTH” fields on the linked list is required to 

exactly equal the cycle time of the circuit being verified, for consistency-checking 

purposes and to avoid ambiguity. 
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Figure 2-7 

Data structures used to represent signal values 

The “SKEW” field is used to represent skew caused by delaying the signal by a 

variable amount of time. Consider the example in Figure 2-8. The gate has a 

minimum delay of 5.0 nsec and a maximum delay of 10.0 nsec. The two input signals 

will be ORed together as if the gate had zero delay, and the value of the output signal 

will then be delayed by the minimum delay. The skew field will then be set to the 

difference between the maximum and the minimum delay of the gate. By doing this, 

rather than by using “RISING” and “FALLING” values to represent the uncertaintity in 

when the signal will transition between a zero and a one, the symmetry information 
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about the width of pulses is preserved since the rising and trailing edges of the signal 

are delayed by the same amount. When modeling a technology in which the rising and 

falling values of signals are different, this algorithm will have to be modified to take 

such asymmetry into account. 

X 0 J 
0 

14 T-10 T-30 T-50 

Y 0 I 1 0 I I 

T-263 T-40 

2 0 1 R ) 1 1 F 1 
7.15 T-20 T-45 

IXLLEBSERECORD 

NIL UFCLE REcm URE (ZECORD UFLLE FiEcorzD 

-3 > NIL 

5 8 1 e 

NIL 15 30 6 
L 

Figure 2-8 

Examr4e showing how skew is handled 
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This separate representation of skew can be used in essentially any situation in 

which a signal value is merely being delayed by a variable amount. However, if two 

signals are being combined, then the skew of the combined value in general cannot be 

simply represented with a single field. Because of this, when two signals are combined, 

their skew is inserted into the resultant signal representation using the “RISING” and 

“FALLING” values. For example, the output signal 2” from the last example is shown 

in Figure 2-9 with its skew inserted into the signal value. . 

2 0 1 R 1 1 1 F 1 
T-15 T-20 T-45 

I --.--A-d I >I I I 

1 >I NIL I 

Figure 2-9 

Output signal Z with skew represented in signal value 

The *EVAL STR PTR” field is used to keep track of the evaluation string 

associated with the signal value. For example, if the evaluation string “HZZW” is given 

on the input of a gate, then each letter specifies how to evaluate a subsequent level of 
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gating. Each gate will remove the letter which specifies how to evaluate it, and wi9l pass 

along the rest of the string and the output value from the gate, to specify hew to 

evaluate the next level of gating. The string ‘I-IZZW” would then specify the evatuation 

of four levels of gating, with the “I-I” controlling the first level, a.nd the ‘W” conerolling 

the fourth and last leve9. 

2.9 TECIINI@JE USED FOR @YRG?JIT EVALUATYON~ 

The first step in evaluating a circuit is to InitiaYire to ‘UNDEFINED” all signals 

without assertions. Signals with clock assertions’are set to the va9ue specified. SignaOs 

with seable assertions are set to the value “STABLE” during the time specified by t9ne 

assertion, and to the value “CWANGING” the rest of the time. Signals which are 

specified in the case ana9ysis file will be set to the value specified for the case being 

calculated whenever they otherwise would be given the value “STABLE”. 

In the next step, the Timing Verifier evaluates all of the primitives which define 

the circuit by looking at their current input values and, based on these, calculating new 

output values. Whenever a new output value is different from its s9d value, all of the 

primitives which are driven by ehae output are added to m list of primitives ts be 

evaluated during the next pass of the Timing Verifier. This process contiweg 

reevaluating those primitives which have had their inputs changed, until al9 sf the 



signals stop changing. At that point, the Timing Verifier knows the value of each signal 

over the clock period, for the first case to be analyzed. 

The next step is to evaluate all of the see-up and hold times, and minimum pulse 

width checkers, based on the value of their inputs, and to output error messages 

reporting any errors detected. This error checking includes set-up and hold time 

constraints specified both by the set-up and hold time primitives and by the %A” and 

%H” evaluation directives. 

At this point, the first case has been evaluated, and the Timing Verifier is ready 

to evaluate the next case. This involves changing the values of those signals specified 

by the case analysis file, and reevaluating those primitives whose inputs are affected. 

This process is continued, as in the first case, until all signals stop changing. At that 

point, the second case has been checked. The Timing Verifier will continue this process, 

incrementally reevaluating the network, until all of the cases specified by the designer 

have been checked. 
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Chapter III 

APPLICATIONOFTIMING VERIFICATION 

This chapter gives a set of examples of the use of the SCALD Timing Verifier, 
. 

and discusses statistics on its use. 

3.1 SPECIFICATION OF TIMING PROPERTIES OF COMPONENTS 

The timing properties of the components which constitute a design are described 

to the Timing Verifier in terms of a set of built-in primitive functions. These functions 

include gates, regisrers, latches, multiplexets and set-up/hold/minimum-pulse-width 

checkers. The definitions of these primitives are given in Section 2.4. 

A manufacturer’s specification of a &word by 4-bit register file chip is given in 
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Figure S-I to 3-4. The specification to the Timing Verifier of this component’s timing 

properties is given in Figure 3-5, and is expressed in the SCALD Hardware Description 

Language [Sp191. A brief description of the basic features of this SCALD language will 

be sketched in the following example. 

Figure 5-5 represents a macro to be expanded every time the chip with name 

“116W RAM 10145A” is used. This definition defines a memory whose width in bits is 

given by the variable ‘“SIZE”, which is defined when the macro is called. A call to this 

macro Is shown in Figure 2-5, showing a size of 82 bits being specified. The 

“PARAMETER” body in Figure 3-5 defines the parameters which can be passed to it, 

and also specifies the number of bits which each parameter may be passed. For 

example, the parameter declaration “I<O:SIZE-I>” says that the “I” parameter has bits 

numbered from ‘0” to “SIZE-I,” and is thus SIZE” bits wide. The string “/P” af&r a 

signal name says that ehe signal is a parameter of the macro, and is used as a consistency 

check, as well as improving the readability of ehe macro. The string “/AI” says that the 

signal is local to ehe macro. If neither “/M” or “/P” are given, then the signal is global. 

The name of this macro “NW RAM 10145A” is given ip1 the Dower center portion of the 

drawing. 

The “16W RAM 10145A” definition checks the set-up and hold time constraints 

on the input signals “I<O:SIZE-I>“, a CS”, and ‘“AcO:.%“, by using the “SETUP PiOLD 

CHK” and “SETUP RISE HOLD FALL CHK” primitives. For example, the upper 

“SETUP HOLD CHK” body checks that the “I&SIZE-I>” inputs are stable at lease 4.5 

nsec before the falling edge of the write-enable (“WE”) pulse and for at least -1.0 nsec 
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after it. The leading .-” on the signal “- WE” says to use the complement of the signal 

‘WE”. The *SETUP RISE HOLD FALL CHK” body, in the lower left hand corner, 

checks that the address lines of ehe memory (“A<O:S>“) are stable at least 3.5 nsec before 

the rising edge of the write-enable pulse, that they are stable while the write-enable 

pulse is high, and that they stay stable for at least 1.0 nsec after the falling edge of the 

write-enable pulse. The ‘MIN PULSE WIDTH” primitive checks that whenever the 

write-enable pulse goes high, it does so for at least 4.0 nsec 

The *CHG” and “3 CHG” gates at the top of the page cause their outputs to 

change after the delay specified by the “DELAY” parameter whenever their inputs 

change. For the “CHG” gate, the “DELAY” parameter says that it has a minimum delay 

of 1.5 nsec, and a maximum delay of 3.0 nsec. For the “3 CHG” gate, the “DELAY” 

parameter says that it has a minimum delay of 3.0 nsec, and a maximum delay of 6.0 

nsec. 
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Figure 3-l 

coma SVYIOL 

CONNECTION DIAOIAY 
DIP ITOP VIEWI 

l ACnAQE OUTLINE 68 

Manufacturer’s data sheet for register file chip 

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis 
Street, Mountain View, Ca, 94042. 
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Figure 3-2 

Manufacturer’s data sheet for register file chip 

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis 
Street, Mountain View, Ca 94042. 

-6f 



Figure 3-3 

Manufacturer’s data sheet for register file chip 

Reprinted with permission from Fairchild Camera and instrument Corporation, 464 Ellis 
Street, Mountain View, Ca 94042. 
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Figure S-4 

Manufacturer’s data sheet for register file chip 

Reprinted with permission from Fairchild Camera and Instrument Corporation, 464 Ellis 
Street, Mountain View, Ca. 94042. 
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Figure S-5 

Definition of a B-word random access memory chip 

The definition of a P-input multiplexer chip Is given in Figure 3-6. This 

definition is given in terms of the 3 MUX” primitive, which has a minimum specified 



delay of 1.2 nsec, and a maximum delay of 3.3 nsec from any of the inputs to the output. 

The select input (“6”) has an additional minimum delay of 0.3 nsec, and an add&tonal 

maximum delay of 1.2 nsec, which is added to the delay of the “2 MUX” primitive. 

~e:sIzE-l~ x STEP - SIZE ns 
1ce:s1zE-1, 

S 

Tce:SIZE-1, 

CB:SIzE-1, /e 

Ml 
DELAY- T 

T<B:SIzE-1, /P 

1<0:SIzE-l~ /P 

s rP [ee.3:1.21 

18158 

Figure 3-6 

Definition of a 2-input multiplexer chip 

The definition of an edge-triggered register is given in Figure 3-7. This 
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definition is stated in terms of the register primitive. It has a minimum delay of 1.5 nsec 

and a maxlmum delay of 4.5 nsec. The “SETUP HOLD CHK” primitive specifies a 

set-up time of 2.5 nsec and a hold time of 1.5 nsec for the data input ‘I&SIZE-l>” with 

respect to the “CK”. 

1 SIZE) 
sETLpmDcw 

Sl 
-1 

SETLP-2.5: 
HCLD -1.5 

CK 

1 SIZE) 
IEG 

I~B:SIzE-1, /P 
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1 CELW- T 
Tc0:SIZE-1, /P 

1.5.4.5 

CK 
A 

CKff I 

PFRC*ZTER DIFIK 

I~e:sIzE-l~ X STEP - SIZE 
CK 

T<O:SIE-1, N 

WRCTLRER 

FMS 

18176 

Figure 3-7 

Definition of an edge-triggered register chip 

The definition of a 2-input OR gate is shown in Figure 3-8. It is defined in 

terms of the “2 OR” prlmitive. The gate has a mlnimum propagation delay of 1.0 nsec 

and a maximum propagation delay of 2.9 nsec. 



x STEP - SIZE FtlS 

DELQY-1.0.2.9 

18185~ 

Figure 3-8 

Deflnltlon of a Z-input OR gate 

The Timing Verifier definition of an arithmetic/logic unit with output latch is 

shown in Figure 3-9. This unit performs one of 16 functions on the three data inputs 

“A <0:3>“, l B<O:3>“, and %I”. The function to perform is selected by the input S&3>“. 

The input ‘E” enables the output latch. The SETUP HOLD CHK” primitives check 

the set-up and hold time constraints on the data inputs when the latch is closed. The 

propagation delay from the data inputs to the output is specified by the group of XHC” 

gates. 
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Figure 3-9 

Definition of an arithmetic/logic chip (ALU) 
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3.2 CIRCUIT VERIFICATION EXAMPLE 

Figure 2-5 shows an circuit example to be analysed by the Timing Verifier. This 

circuit consists of a 16word by 32-bit register file, a 32-bit output register, a 24nput 

multiplexer which selects between the read and write addresses for the register file, and 

several gates. The circuit is designed to run with a cycle time of 50 nsec. The 

minimum/maximum pair of default wire delays used by the Timing Verifier in checking 

this circuit was 0.012.0 nsec, and the default clock skew for the clocks was - 1.0 to +I.0 

nsec. The time unit used in the specification of the clocks and assertions is 6.25 nsec, 

which gives 8 clock units per cycle. 

One of the most useful features of the Timing Verifier is its ability to analyse all 

of the timing properties of a design as fhc design proceeds, rather than having to wait to 

be used until the design is completed. As such, it can accept as input the description of 

this circuit example, which would typically be a small section of a much larger system, 

and determine if it contains any timing errors. 

The stable assertions on the input signals which are not generated in this circuit 

are crucial to the ability to verify a design in sections. For example, the assertion on the 

signal “W DATA SO-6” states that it is stable from time 0 to time 6, and that it may be 

changing during the rest of the cycle, i.e. from time 6 to time 8. The assertion on the 
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signal “READ ADR .S4-9” says that it is stable from time 4 to time 9, and may be 

changing the rest of the cycle, i.e. from time 1 to time 4. This may seem somewhat 

unusual at first, but the cycle time of the circuit Is 8 clock units long, and the assertion 

specification is taken to be modulo the cycle time. 

Considering interconnection delays on incomplete designs presents some interesting 

problems. If the actual wire delays are known for the signals in the circuit, they can be 

used to do the analysis. If not, the Timing Verifier will use a default wire delay, unless 

the designer specifies wire delays for specific signals. The minimum/maximum default 

wire delay pair of 0.012.0 nsec was used for all of the wires in this example, except for 

the address lines on the register file, where the designer specified that it could be 

anywhere from 0.0 to 6.0 nsec. 

Figure 3-10 exhibits the summary output listing generated by the Timing Verifier, 

showing the values of the signals over the cycle time of the circuit. For example, the 

first entry says that the address lines .ADR&S sw are stable at the beginning of the cycle, 

and that they start changing 0.5 nsec into the cycle. They then go stable 5.5 nsec into the 

cycle, and stay stable until 25.5 nsec into the cycle. They are then changing from 25.5 

nsec to 30.5 nsec. after which point they stay stable for the rest of the cycle. 

Figure 3-l I contains the set-up and hold time errors which were detected by the 

Timing Verifier. The first message states that the “SETUP HOLD CHK” primitive 

specified a set-up time interval of 3.5 nsec, followed by a hold time of 1.0 nsec, and that 

the set-up time was violated. The next two lines give the values seen by the ‘SETUP 
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HOLD CHK” primitive on the data and clock inputs. They show the data not 

becoming stable until Il.5 nsec into the cycle, and the clock starting to rise Il.5 nsec into 

the cycle. Thus, the set-up time interval specified was missed by the full 3.5 rnsec. The 

next error message shows that the set-up time interval on the output register was 

violated. The data didn’t go stable until 47.5 nsec into the cycle and the clock starts 

rising at 49.0 nsec, thereby missing the specified set-up time interval of 2.5 rasec by 1.0 

nsec. 

ADll<e:3> . . . 
CgmFg. . . 

CK :P4-8 : : : 
ourrirt~e:3l> . . 
PAY<e:51>. 
READ AIM s440:3>: 
lus clr 
Y  DATA .S6-&3l> : 

KlTr: .s& . * 
YYITE AIM .s0-&:3j 

. c:e.s. s:s.s. c:zs.s s:3e.s 
1:l.B P:24.9 U6.8 P:49.0 
R:ll.k, 1:13.5. F:17.& 0:lS.Q 
0:l.B. 11:24.9. 1:2S.@, F:49.8 
c:e.s. ~~7.5 
c5.e. s9e.s. c:30.0. s:4s.s 
C:6.3. s:2s.e 
l:l.e, F:24.e. m6.8, h49.e 

c:37.s 
R:1l.S. 1:13.s. P:17.$. 0:lS.E 
c:JI.s 
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Figure 3-10 

Timing Verifier output showing values of signals 
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Figure 8-I 1  

Set-up and hold time errors found by Timing Verifier 

3.3 PROCESSOR DESIGN TIMING VERIFICATION 

The SCALD Timing Verifier has been used in the design of the S-l Mark DA 

processor [SP791. This exercise has served to validate the utility of the described 

approach to timing verification, and has also provided performance statistics. The Mark 

HA is a highly pipelined processor which is designed to issue a new instruction every 50 

nsec. The machine has a vector instruction unit which is being designed to process 

vector operands at a pipeline rate of one every 25 nsec. The design rules employed by 

the Timing Verifier in the examination of the Mark IIA design are: 
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0 The overall circuit cycle time was specified to be 50 nsec. Ma&r parts of the 

design operate at a 25 nsec cycle time. 

0 The minimum/maximum default interconnection delay pair was 0.012.0 nsec, 

and was used except for those signals for which the designer specified a 

different range. The actual interconnection delays for the Mark IIA design 

based on the transmission line properties have not yet been calculated via 

detailed simulation, and as such, cannot be checked. Refined rules for future 

designs could take into account the number of loads on a run, and the size of 

the different loads. It is easy to vary the rule that is used, but more difficult to 

find a single rule which works well in practice in all instances. The other 

constraint is that it is convenient to the point of necessity to have a rule which 

is easy for the designer to use in estimating the delay while doing the design. 

A rule which only slightly improves the accuracy of the delay, but which is 

difficult for the designer to readily employ, is clearly not worthwhile. 

0 The pr,ecision clocks are assumed to have a skew of + 1.0 to - 1.0 nsec from the 

times specified, and the non-precision clocks are assumed to have a skew of 

+5.0 to -5.0 nsec. The implementated design will have a set of programmable 

delay lines which will be used to trim the clocks’ skews to this specification. 

0 The propagation delay for the integrated circuits used are the minimum and 

maximum delay specifications given by the manufacturer. Where a part is 
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manufactured by a number of different companies, the worst-case delay 

numbers, determined from the minimum and maximum values of the different 

specifications from the various companies are used. 

The next two sections will discuss the execution statistics derived and the 

evaluation made as results of using the Timing Verifier to examine the S-l Mark DA 

design. 

3.3.1 Design Experience in Using the Timing Verifier 

The basic approach used to validate the functioning of the Timing Verifier and 

to assess its utility has been to extensively exercise It on the design of a high 

performance digital processor, the S-l Mark IIA. It has been used frequently to check 

the design of this system for timing behavior as it has progressed toward 

implementation. The approach taken has been to advance the design for about a day, 

and then to enter the new design into the SCALD system, via the Stanford University 

Drawing System (SUDS) [He723 running on the S-l Mark I system operating in PDP-IO 

simulation mode. The design is then processed through the SCALD Macro Expander, 

which checks the design for syntax errors and generates a file which represents the 

expanded design. The expanded design is then read into the Timing Verifier, which 

checks all of the timing constraints imposed on ft. 
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This daily introduction into the design effort of feedback about timing errors has 

been exceedingly helpful. It has allowed possible timing errors to be corrected while the 

associated design is fresh in the minds of the designers, and before a great deal of 

additional logic is designed which depends on the timing properties of the logic already 

designed. 

A typical circuit from the S-l Mark IIA design is shown in Figure 3-12. It 

consists of a %-bit arithmetic/logic unit with output latch, a 36-bit debugging/status 

register with load-enable, and a function decoder that controls the function select input 

to the arithmetic/logic unit. All of the inputs and outputs from this circuit contain 

assertions which specify when they can change. This allows the timing of this circuit to 

be checked, either by itself or with the rest of the design. Adding these stable assertions 

to the interface signals greatly adds to the readability of the design, making its timing 

features exceedingly clear. 

The timing constraints that need to be checked by the Timing Verifier for the 

circuit in Figure 9-12 are the set-up, hold, and minimum pulse width constraints on the 

output latch of the arithmetic logic unit and the debugging/status register. In order to 

do this the Timing Verifier has to calculate when the inputs to these functions can 

change, relative to their clocks, and the width of the clocks. 
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Typical arithmetic circuit in the S-l Mark IIA design 
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33.2 Execution Statistics of Timing Verifier 

The basic execution statistics associated with running the Macro Expander on the 

S-l Mark I system [Sp783 (which has a throughput rate approximately equivalent to an 

IBM 370/168) for a major portion of the Mark IIA design consisting of 6357 MS1 

ECL-IOK and ECL-IOOK chips are shown in Table 3-I; this portion contains 

approximately 97,709 Z-input gates-equivalent of logic and 1,803,136 bits of memory. 

These execution statistics are resolved into three portions of this processing task. The 

first part is that involved in reading the input files and building the data structures to 

represent the design. Next, the Macro Expander does an expansion of the design to 

generate a summary listing, and builds up a data structure which resolves all synomyms 

between different signals; this is Pass I. Finally, the Macro Expander expands the 

design again, this time outputting the fully elaborated design for use by the Timing 

Verifier or the SCALD Layout Program; this is Pass 2. 
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MACRO EXPANSION EXECUTION STATISTICS Elapsed Time, 
minutes 

Reading input files and building data structures 1.92 
Pass I of Macro Expansion 8.42 
Pass 2 of Macro Expansion 6.18 

16.52 

TIMING VERIFIER EXECUTION STATISTICS 

Reading input files and building data structures 
Generating cross reference listings 
Verifying circuit 
Generating timing summary listing 

4.45 
0.72 
6.75 
0.22 

12.14 

Total for both Timing Verifier and Macro Expander: 28.66 

Table 3-l 
Execution statistics for 6357 chip design example 

The Macro Expander generates a design representation in terms of primitive 

definitions which are built into the Timing Verifier. Table 3-2 gives a listing of the 

primitive types generated for the circuit example processed by the Macro Expander. 

There were a total of 22 primitive types used, and each type was used 376 times on the 

average, for a total of 8282 primitives. This gives 1.3 primitives per chip in the design. 

These chips are MS1 components and RAMS which average about 20 gates per chip for 

the logic, and IK bits per RAM. The reason why so few primitives were used is because 

the primitive types, such as .registers (‘REG RS”) and multiplexers (‘8 MUX”), are 

reasonably high-level ones, and each primitive represents an arbitrarily wide data path. 
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For example, the average width of a primitive was 6.5 bits. If this symmetry had not 

been exploited, then 53,833 rather than 8,282 primitives would have been used to 

represent the circuit. 
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PRIMITIVE TYPE 

2 AND 
2 CHG 
2 MUX 
20R 
3 CHG 
30R 
4 CHG 
4 MUX 
40R 
50R 
8 CHG 
8 MUX 
BUF 
CHG 
LATCH 
LATCH RS 
MIN PULSE WIDTH 
REG 
REG RS 
SETUP HOLD 

NUMBER GENERATED 

374 
438 
288 
917 
I52 
430 
6 
83 
167 
241 
112 
51 
I507 
693 
209 
102 
361 
246 
21 
1010 

SETUP RISE HOLD FALL 343 
XOR 53, 

8282 

AVERAGE NUMBER 
OF BITS WIDE 

6.1 
1.7 
7.2 
2.3 
1.3 
2.5 
7.8 
10.9 
3.8 
1.3 
4.0 
6.8 
4.8 
8.5 
6.5 
8.7 
1.0 
25.4 
3.7 
9.7 
17.7 
2.0 

ii 

Table 3-2 
Primitive definitions generated for 6357 chip example 

The execution statistics for the Timing Verifier are shown in Table 3-l. The 

Timing Verifier took 4.45 minutes reading in the output from the SCALD Macro 

Expander, and then building up its data structures. It then generated cross reference 

listings, which aid the designer in finding where signals are used within the design. The 
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next step was the timing verification process itself. This required 6.75 minutes. or about 

49 milliseconds per primitive. In doing this verification, 20,052 events were processed, 

where an event was caused by an output being given a new value, which in turn caused 

all primitives which use that output value to be updated. An event then took 20 

milliseconds to process. This verification was for a single case. 

The amount of time required to analyze an additional case is proportional to the 

number of events which have to be processed for that case. In general, only those 

signals which are affected by the case analysis need to be recalculated. The Mark IIA 

processor is a pipelined processor, in which every pipeline stage must take the same 

amount of time to execute. It was found that case analysis was only rarely required for 

that design. However, for some design styles, e.g. those in which variable length cycles 

are used, case analysis is essential. 

Table 3-3 gives the storage required for data structures used during the Timing 

Verification. Representing the circuit description is the single largest part of this 

requirement, representing 37.8%. The circuit description is comprised of a 

characterization of each primitive used, with a description of which signals were passed 

to each of its parameters. This is the main data structure used while the circuit is being 

verified, and its average size is 260 bytes per primitive. The S-l Mark I PASCAL 

compiler doesn’t pack its records, so all fields require four bytes, except characters and 

booleans, which take one byte. 
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STORAGE TYPE K BYTES X OF STORAGE 

CIRCUIT DESCRIPTION 2149 37.8% 
SIGNA L VALUES 1843 32.4% 
SIGNAL NAMES 660 11.6% 
STRINGS SPACE 600 10.6% 
CALL LIST ARRAY 389 6.9% 
MISCELLANEOUS 41 0.7% 

5684 100.0% 

Table 3-3 
Storage required by Timing Verifier for 6357 chip example 

The next largest part of the storage requirement is for the storage of signal values. 

A linked list is stored for each signal in the system representing its value. For the 

current example, there were 33,152 of these value lists stored, each of which had a base 

record followed by an average of 2.97 value records. The average amount of memory 

needed to store the value of a given signal was then 56 bytes. The storage area for 

keeping track of signal names is used to point to the value definition for each bit of a 

signal vector, and to record which primitives define and use a given signal; it required 

11.6% of the total storage used. The string space, which stores the text strings used by 

the other data structures, accounts for 10.6% of the storage space. The “CALL LIST 

ARRAY” describes which primitives need to be reevaluated when a given bit of a signal 

is updated, and accounts for 6.9% of the storage space. The ‘MISCELLANEOUS” 

category represents a number of minor data structures used within the Timing Verifier, 

which represent 0.7% of the storage. The Timing Verifier program consists of 4700 lines 

of PASCAL code and requires 214K bytes of memory when loaded with run-time 
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support. 

In general, a compiler that packed the records to take up minimum space would 

permit a significant reduction in Timing Verifier storage requirements. Also, additional 

programming to optimize the data structure for space could result in a non-negligible 

storage saving. The approach taken for this research was to get a system up and 

running relatively quickly, to evaluate the basic concepts of this approach, and not to try 

and produce an optimized implementation for use in a production environment. Even 

so, this system has been sufficiently efficient and powerful to be used extensively in the 

design of the S-l Mark IIA processor. 
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Chapter IV 

CONCLUSIONS AND FUTURE RESEARCH 

4.1 CONTRIBUTIONS 

This thesis has developed an algorithm and associated implementation that: 

0 Verifies all of the timing constraints in synchronous sequential circuits, 

including those containing value-dependent timing. 

0 Verifies timing constraints in these circuits as the design proceeds, without the 

need for microcode or diagnostic programs, by doing most of the verification in 

a value-independent fashion. 

-86- 



0 Allows large digital logic circuits to be conveniently verified in sections through 

the use of assertions on interface signals. 

Many large digital circuits designed today are synchronous sequential digital 

systems. Previous approaches used to detect timing errors In these designs have been 

unable to handle the portion of circuits for which the timing is a function of the values 

of the control signals (e.g., path-searching systems), or have generally been necessarily 

incomplete in their testing for all possible timing errors (e.g., gate-level logic simulation.) 

Path-searching systems search for the longest (or most critical) path between two 

registers or latches. These systems have the fundamental limitation that they cannot 

simulate the portions of the circuit which need to know the value behavior of some of 

the signals in order to determine the timing of the circuit. Therefore, the handling of 

clocks used in unusual ways, such as driving the select line of a multiplexer, or the 

treating of circuits requiring case analysis tend to result in large numbers of spurious 

error messages being generated. Some of these systems generate so many irrelevant error 

messages that they have been found to be inconvenient to use. 

Gate-level logic simulation simulates a digital logic system, taking into account the 

timing properties of the components. Simulation is generally an inefficient way to check 

for timing errors, because of the need to simulate a large number of cycles of the 

operation of the circuit in order to test all of the different state transitions which must be 

checked; only by doing so can the designer be certain that all of the worst-case paths 

through the design have been tested. Such logic simulators are also inconvenient to use, 
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because the complete value behavior of each signal in the design needs to be available, 

whereas to check only the timing behavior typically requires much, less information. 

This additional information required to simulate a design comes in the form of 

microcode and diagnostic programs and data patterns to drive signals not defined by the 

circuit; these are normally laborious to generate. It is particularly inconvenient to 

generate and update such data sets on many occasions, as the design progresses, which in 

turn is necessary to allow timing constraints to be verified as the design evolves. With 

Timing Verifier usage, it is convenient to check the design on a regular, frequent basis, 

so that timing errors can be found as soon as they occur. 

This thesis has developed and evaluated in realistic use an algorithm to verify alJ 

of the logic level timing constraints in the design of synchronous sequential digital 

systems, in a way that eliminates the basic problems of previously available methods. 

This algorithm is computationally efficient, requiring an amount of time per case to be 

analysed of the same order as what a logic simulator would require to simulate only one 

micro-cycle of the circuit. It is also convenient to use and eliminates the need to generate 

microcode, diagnostics, and data patterns to drive signals not yet generated, by verifying 

most of the design in a value-independent fashion. Moreover, it allows a design to be 

conveniently checked for timing errors as it proceeds, and in a highly modular fashion. 

A Timing Verifier has been implemented using this algorithm and used in the design of 

a high performance pipelined processor, the S-l Mark HA. Extensive use of the Timing 

Verifier in the design of this processor has shown it to be a convenient and highly 

effective tool. 



The early detection of timing errors in designs can result in a significant reduction 

in the design time required to make a digital logic system run at a given speed, in 

addition to supporting creation of faster-running implementations of designs so realized. 

In the design of large, high-speed digital logic systems, the handling of timing errors and 

the optimization of the design for timing constitutes a large fraction of the total system 

development time. The timing verification technique described here can substatially 

improve the procedures which are currently being used, thereby making a significant 

impact on how digital computing systems are designed and implemented. 

4.2 FUTURE RESEARCH 

There are a number of areas of research in this field to be addressed in the futwre. 

These include verifying the timing of asynchronous circuits, taking into account different 

rising and falling delays, consideration of correlations between different events within 

the circuit, and evaluating a system that does probability-based analysis, instead of the. 

minimum/maximum-based analysis used in the present work. 
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4.2.1 Asynchronous. Self-Timed Circuits 

One form of asynchronous circuit currently being discussed in the literature is the 

“self-timed” circuit [Me80, Se79J. These are circuits in which each module within a 

design keeps track of how long it takes to compute a result. Modules then do 

hand-shaking between themselves, keeping each other from proceeding until all of their 

inputs are valid. One of the advantages of this type of design is that a central clock 

doesn’t have to be distributed, which is a current problem in VLSI designs where only 

one level of metallization is used (as clock lines carried significant distances in ~Iow”, 

non-metallic lines develop unacceptably large skew. A number of manufacturers are 

looking at multiple layers of metallization as another possibility.) The verification 

technique developed here could be used to determine the delay of the basic modules, to 

determine how much of a delay needs to be inserted in the circuit which specifies when 

the module is “done”. Checking the hand-shaking logic between the different modules is 

a functional verification correctness-checking problem which is beyound the scope of 

this thesis. 
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4.2.2 Different Rising and Falling Delays 

When designing with an implementation technology such as nMOS, in which 

there are greatly differing rising and falling delays, it is overly pessimistic to jwst use the 

longer of the two delays, as is done in the timing verification technique developed here. 

The fundamental problem is that, except for clock circuitry, the Timing Verifier doesn’t 

know the value of a given signal, and therefore doesn’t know whether to use the rising 

or falling delay value. Now, in all cases except for multiple inverting levels of logic, 

merely using the maximum of the rising and falling delays is the correct choice. One 

approach is to recognize multiple inverting levels of logic, and to automatically adjust 

the delays specified for those gates to take into account the different rising and falling 

delays. This approach would allow the Timing Verifier to continue checking the timing 

in a value-independent fashion, while taking into account the different rising and falling 

delays. 
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4.2.3 Correlations Within Digital Systems 

Another limitation of the Timing Verifier is that it doesn’t consider possible 

correlations in the circuit being checked. Figure 4-l shows a circuit in which an 

edge-triggered register is loaded from either its old output value or from some new input 

value, depending on the value of its select line. This circuit also has a buffer on its 

clock line which inserts a relatively large amount of skew into the register clock. The 

minimum delay of the register and the multiplexer together are longer than the hold 

time of the register, but the Timing Verifier checks the hold time on the register from 

the end of the rising edge, and then calculates when the output of the regjster could be 

changing, starting from the rising edge of the clock pulse. In doing this, the Timing 

Verifier thinks that the input data to the register is changing during the hold time for 

the register, and it generates a false error message. The problem is that the Timing 

Verifier presently does all of its calculations in terms of absolute time values, and ignores 

information about the relative timing of when the register is clocked and when the input 

data can change. Thus there is a correla~ian between the two signals which are inputs 

into the “SETUP HOLD CHK” primitive which the Timing Verifier should consider; 

since it currently does not, it occasionally emits false timing errors in such circumstances. 

Correlation-engendered false timing error tends to be a problem in counters, shift 

registers, and other circuits in which there is feedback from the output of a register into 
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its inputs. The approach which has been taken is to make the designer explicitly insert 

a “fictitious” delay into the feedback path which is at least as long as the skew on the 

clock signal. This delay is inserted with a text macro called “‘CORR” to make it clear 

what the designer is trying to do. Figure 4-2 shows this delay inserted. It suppresses 

generation of the false error message, while allowing other possible errors associated with 

this circuit to be checked. This approach has worked out well in the S-l Mark IIA 

processor design, but puts a significant burden on the designer. It would be preferable if 

a simple method could be devised to automatically solve this problem. A logic 

simulation sys.tem called “DIGSIM” [Ma77a, Ma77bl has been implemented which keeps 

track of the relation of different events to each other and which therefore handles this 

type of situation correctly. The techniques used there could be incorporated into a 

system based on the concepts developed in this thesis. The extra complexity and 

memory required was determined to make this not feasible for the S-l Mark IIA desigrm 

work, and was not implemented in the current version of the Timing Verifier. 
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4.2.4 Probability-Based Analysis 

The Timing Verifier does minimum/maximum-based analysis. This means that 

all propagation delays are specified with a minimum and maximum possible value. The 

design is then checked to see that it will always perform properly if all components 

perform within their specified time ranges. 
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Probability-based analysis allows a distribution to be specified for each 

propagation delay. The design is then checked to see that all of the paths in it are within 

their required limits with a specified level of probability. The idea is that there is a low 

probability of crll of the components along a given path having either of their extreme 

values. The ‘DICSIM” logic simulator does this type of analysis and assumes that all 

the components’ timing characteristics have normal distributions [MaVa, Ma77bl The 

type of analysis the timing verification should use depends on the technology being 

studied and the design techniques a given design team wishes to use. For example, if all 

of the components along a given path come from that same production run, then their 

delays may be quite highly correlated, and the probability-based analysis may therefore 

indicate that a circuit built with them will work with a probability that will be much 

higher (or lower) than will be found in the real production environment. The problem 

here is that the probability-based analysis assumed that the delays between the different 

components were uncorrelated. Another problem with the probability-based analysis 

arises when the manufacturer starts testing the timing properties of the components and 

sorting them into faster and slower groups. All of the fast components may be sold to 

one customer, spoiling an orginal normal distribution for the rest of the customers. 

Another problem is that the actual distribution of delays for a given component may 

vary significantly from manufacturer to manufacturer, and even from month to month 

from the same one. All the manufacturer guarantees is the minimum,and maximum 

timing specifications, which are easy to measure. The present approach may therefore 

be the best one in such circumstances. 

-96- 



For those technologies and environments in which probability-based design is 

appropriate, an equivalent of Timing Verifier capability is nonetheless needed. Such a 

Timing Verifier could keep track of means and variances, rather than minimum and 

maximum values. 
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